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The elastic moduli of polycrystalline aggregates can be calculated
by various methods from the known elastic constants of single crystals.
Direct averaging, based on the hypotheses of uniform deformation
(Voigt's method [11) or of uniform stress (Reuss's method [2]), gives a
pair of values for the elastic moduli, between which the tue valiue
lies. The difference in the values of the elastic moduli averaged by
the Voigt and the Reuss methods results from ignoring the correlations
between the crystals in the aggregate. The discrepancy can be reduced
for example, by means of the so-called self-consistent method [3, 4]
which has been applied to polycrystalline aggregates by Kroner [5] and
Kneer [6,7]. A drawback to this method is the necessity of introducing
model concepts.

A more general approach, based on the use of the theory of random
functions, has been developed by I. M. Lifshits and his co-workers
[8,9]. This method is based on the calculation of the cormrelation cor-
rections to the tensor of the elastic moduli Ajiyyy. There is another
possible method of approach, based on calculating the correlation
corrections to the tensor of elastic compliance sjkim = >‘i—lltlm‘ ‘This
method has been developed for polycrystalline aggregates of cubic
stucture in [10], and below it is extended to polycrystalline aggre-~
gates with swuctures of lower symmetry. Since the method of cal-
culating the correlation corrections to the tensor of the elastic moduli
is somewhat different from that adopted in [8], for ease of comparison
of the methods the calculation of the corrections to the moduli of
compliance sjkim given below is accompanied by the corresponding
calculation for the elastic moduli Ajkim-

By taking account only of the pair correlations, we obtain the
following equilibrium and incompatibility equations [10, 113:
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Here u; is the displacement vector, o;., is the stress tensor, and
L and R are, respectively, the regular and random components of
the operator Q

Qit = VebirimVims Qikim = EirpChsqVpVeSrsim . (2)

The unit antisymmetric tensor is denoted &jrp and the tensor
Green function of the operators L is denoted g. The latter are de-
termined by the equations
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symmetrization being carried out with respect to the indices given in
parentheses.
The Fourier transforms of the Green functions are
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Here np = kp/k, and the coefficients ci and s; determine the
elastic constants averaged without taking into account the correla~
tions in the Voigt and Reuss methods, respectively
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From Egs. (1) and (3) the following expressions are obtained for
the effective tensors Ajpym and Sjkims:
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Here app1m and bj T are the binary correlation tensor functions
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In the case of an untextured medium
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with o(0)= 1.

Let us first consider polycrystalline aggregates of the tetragonal
system. Then for classes of symmetry with six independent elastic
constants, the tensors of the elastic moduli and compliances of a
crystallite in the crystallographic system of coordinates may be repre-
sented in the form
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the constants ¢; and s; being related to the two-index elastic con-
stants ¢jj and s;; by the equations
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By means of Eqs. (7)=(9) we can find the total contractions of the
autocorrelation tensors
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by which the partial contractibns are expressed
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There are similar relationships for Brjslrﬁ(n .
Converting to integration in wansform space in (6) by means of the
Parseval theorem and taking into account Egs. (8)~(12), we obtain
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Table 1
Cubic System
Ag Al Au K Li Na
Wy 3.38 3.22 3.11 0.1747 0.694 0,380
vy 3.07 2.94 2.86 0.1428 0.539 0.296
p«; 3.08 2.93 2.85 0.1373 0.495 0.274
Bg 2.55 2.49 2.41 0.0346 0.248 0.152
A% 0.377 0.379 0.363 0.353 0.348 0.385
Al 0.609 0.508 0.632 0.586 0.553 0.537
Ni Ph Cu Ge Th Pa
By 9.47 1.012 5.46 5.64 3.40 5.32
Py 8.78 0.890 4.91 5.49 2.98 4.89
e 8.75 0.883 4.88 5.43 2.95 4.88
Wa 7.77 0.638 4.00 3.30 2,33 4.16
AL 0.406 0.354 0.380 0.452 0.389 0.375
Al 0.579 0.625 0.600 0.541 0.578 0.615
Sigtm = Sirtmd> = Yo Kg 8ix0ym 4+ a sW R Dikton 5 13 67 (831873 — 8108 10) (BeaByy 4~ BiesBia) + (Biad s 18,585 %
(Cont'd) _
where X (6k1611 - §k28l2> + (6i16j'3 + 61‘361’1) (5k1512 + 6k2511) +
e 3eq I+ 8e, + (8,855 1t 8;98;1) (g5 + 810} (18)
Ay =—t3e, (1 -+ 260) * R .
5 to Ajjk1 and a similar term to sjjk1- The relationship between the
bty = ___”%(Mi;m , one-index and two-index elastic constants is described by expressions
5 (1 -+ 203) (10), in which we have to put ¢s = 5= 0, ¢7=cCu, and s; =354/2,
N 1 = — B 651 + 75 The mean and effective values of the elastic moduli for metals
Kp sz (s1+ 2)° of the cubic system are given in Table 1 and those for polycrystalline
1 10858 4 (651 + 755) B aggregates of lower symmetry in Table 2. Some of the elements of
ST = 39552 (51 1 S2) — a4 the cubic system were calculated less accurately in [10). The two-
index elastic constants were taken for Zr, Ti, and Be from [12], for
o = ag%mv 4, = 3#%2 — %, zn from [7], and for the remainder from [13]. If several values of
simm ijman the elastic constants were reported in [13], the first were always
B =Bifm s By = 3Bijmn — 2By (15) taken.
In the last two lines of the tables, after the values of p and K, the
with the values of the elastic moduli averaged without taking the relative values of the ranges
correlations into account equal to
n *
- = (by — by Yty —Bp):
Ky=ca 450, Byp=0, KJj=9+6s P =hss. (18) sv =y v Mty R

Expressions (14) are applicable to polycrystalline aggregates of
random crystallographic symmetry. In the case of tetragonal sym-
mewy the tensor contractions & k! and il , which determine the
coefficients ¢ and B that appear in (14) are given by relationships
(11) and (12). For higher symmetry—hexagonal and cubic—expres-
sions (11) are simplified. In the first case it is nécessa.ry to put
=38 = 0 and in the second o puteg=ca= c5=s53=s4=35= 0. It
is not difficult to show that when the effective moduli of shear and
hydrostatic compression for a cubic system coincide with the values
previously obtained in [10] and those for 2 hexagonal system with the
values obtained from (14), they lead to the correlaiion comrections
that were derived in a different way by Lifshits and Rozentsveig [8].

similar calcolations for polycrystalline aggregates of classes 32
3m and 3m of the trigonal system lead to elastic moduli which are
determined as usual by means of formulas (11)—(15). However, we
shall now have the contractions
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The elastic moduli Afj;and sjk; for the trigonal crystals differ
from the expressions in (9) because the terms which include the
factors ¢g and ss (which indicate the transition to hexagonal sym-
metry) vanish and the following addition is made:

ARP' = (P'R* — Bty — Bg)

are given, and similarly for the modulus of hydrostatic compression.
Each of the relative ranges characterizes the magnitude of the inter-
val to which the subject method leads.

The data given by Huntington [13] for the inverse matrices of the
elastic constants contain a considerable number of errors; hence, the
experimental data were taken as the basic material, the inverse
matices (cjj and sjj) being checked on a "Nairi™ computer. Bearing
in mind that in certain cases the correlation corrections are small,
we carried out the calculations formally with an accuracy up to nine
significant figures. The final results for the absolute values of the
elastic moduli and the differences between them, given in the
tables, were rounded off to three significant figures, which corres~
ponds to the accuracy of the experimental data. It can be seen from
the tables that, although in the majority of cases the extent of the
range in the Reuss method is greater than that in the Voigt method,
both metheds give similar values for the effective elastic moduli if
the anisotropy of the material is not too great.

To illuszate the effect of the anisotropy on the magnitude of the
correlation correction, Fig. 1 gives curves showing the extent of the
deviation h from the arithmetic mean value in the two methods as a
function of the anisotropy parameter A;= ci3/C1, the elastic con-
stants being chosen as follows: ¢11= ¢33 = 3cip = 3c4e = 3. The devia-
tion h is associated with the correlation corrections. by the relation-
ships h% =0.5 — AK, hlé ==0,5 + A%. The value h = 0 corresponds
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Table 2

Hexagonal System

cd Co Zn Zr Ti Be
Ky 6.28 19.05 7.30 9.54 10.73 11.45
Ky 5.91 19.04 7.05 9.53 10.73 11.44
Ky 6.08 19.04 7.35 9.53 10.73 11.44
Kp 5.03 19.04 6.20 9.52 10.73 11.43
Ak 0.295 0.729 0.228 0.609 0.607 0.550
Ak 0.837 0.326 1.048 0.401 0.400 0.450"
By 2.51 8.44 4.56 3.64 441 14.93
By 2.31 8.15 4.25 3.60 £.34 14.88
PR 2.31 8.17 4.41 3.60 4.33 14.86:
Bg 2.08 8.01 3.64 3.56 4.26 14.80:
A% 0.449 0.660 0.343 0.562 0.469 0.507
A% 0.562 0.369 0.838 0.444 0.505 0.490
Tetragonal Trigonal System
Sn In Shb Bi Hg Te
Ky 5.27 4.16 3.94 3.60 3.35 3.36
Ky 5.26 4.16 3.86 3.46 3.30 3.08
Kp 5.26 4.16 3.94 3.57 3.49 3.69
Kp 5.26 4.18 3.62 3.37 3.23 2.49
AK 0.865 0.132 0.277 0.593 0.415 0.3%
AE 0.230 0.198 0.989 0.843 2.09 1.372
Hy 1.914 0.592 2.51 1.326 0.806 2.34
e 1.711 0.491 2.26 1.243 0.606 1.301
By 1.777 0.502 2.26 1.242 0.573 0.943
bR 1.497 0.372 2.04 1.145 0.326 0.366
A%, 0.487 0.458 0.527 0.460 0.417 0.526
A®, 0.671 0.592 0.465 0.537 0.514 0.293
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to the arithmetic mean of the moduli averaged by the Voigt and
Reuss methods without taking account of the correlations, while hy; =
= 0.5 and bk = —0.5 determine the limits of the range Ky — Ky
which is taken as unity for any value of A,.
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It can be seen from Fig. 1 that hlf, and h% >0if Ay >1, For
Ai <1, the two curves intersect the abscissa and lie in the negative
region. Thus, when A;> 1 the extent of the range in the Voigt
method is greater than in the Reuss method, while when A; <1 the
reverse is true. As was to be expected, as A; — 1, when the contri-
bution of the higher-order correlations is negligibly small, the two
methods of calculation give identical values. It should be noted that
in the limit Ay —> 1 the effective value of the modulus K* differs
somewhat from the arithmetic mean (Ky + Kg)/2. Similar results
are also obtained for h¥, and hﬁ as a function of A;, and also in the
change of the other anisotropy constants A; = cg3/cys and Az = 2c4s/
Hew — cn).

In the limitmgKnans%ion to the isotropic point Ay = Ag=1,

Ay 1, we find 'y = hp = 1/90. At the same values of the
parameters we obtain for shear deformations h‘\l, = hﬁ =1/139, A
similar calculation in the case A; = A; =1, A, > 1giveshy =
=h}=1/90 and b = bl = =1/490. If A, = 4, =1, and A, = 1,
hexagonal material degenerates into cubic. Hence, for A; =~ 1 we
obtain h¥; = b§ = 0 and hl) = Bh = 1/90.

Obviously, if the other isotropic point is chosen, the limiting
transitions A — 1 lead to other numerical values of hy and hp. How-
ever, in terms of the order of magnitude, the departure of the true
elastic modulus from the arithmetic mean will not be great. Since,
as A — 1, the correlation funcrions higher than the second order may
be omitted, the numerical values given show that the true values of
the elastic moduli agree within about 1% with the arithmetic mean

of the moduli found by averaging by the Voigt and Reuss methods
without taking the correlations into account.

With increase in the anisotropy parameter the values of hy, and
hR also increase, indicating that higher-order correlations must be
taken into account. In those cases where the effective value of the
elastic modulus exceeds the limits of the range uy — pg or Ky — Kp,
the anisotropy of the material is so great that limiting the correla-
tions to those of the second order only is no longer admissible,
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