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The elastic moduli of polycrystalline aggregates can be calculated 
by various methods from the known elastic constants of single crystals. 
Direct averaging, based on the hypotheses of uniform deformation 
(Voigt's method ['1]) or of uniform stress (Reuss's method ['2]), gives a 
pair of values for the elastic moduli,  between which the true value 
lies. The difference in the values of the elastic moduli averaged by 
the Voigt and the Reuss methods results from ignoring the correlations 
between the crystals in the aggregate. The discrepancy can be reduced 
for example,  by means of the so-called self-consistent method [3, 4] 
which has been applied to polycrystalline aggregates by Krgner [5] and 
Kneer [6, 7]. A drawback to this method is the necessity of introducing 
model  concepts. 

A more general approach, based on the use of the theory of random 
functions, has been developed by I. M. Lifshits and his co-workers 
[8, 9]. This method is based on the calculation of the correlation cor- 
rections to the tensor of the elastic moduli kik/m. There is another 
possible method of approach, based on calculating the correlation 
corrections to the tensor of elastic compliance Siklm = X~Zm. This  
method has been developed for polycrystalline aggregates of cubic 
structure in [10], and below it is extended to polycrystalline aggre- 
gates with s=uctures of lower symmetry.  Since the method of cal-  
culating the correlation corrections to the tensor of the elastic moduli 
is somewhat different from that adopted in [8], for ease of comparison 
of the methods the calculation of the corrections to the moduli of 
compliance Siklm given below is accompanied by the corresponding 
calculation for the elastic moduli kiklm- 

By taking account only of the pair correlations, we obtain the 
following equilibrium and incompatibili ty equations [1O, 11]: 

(L~ - -  < Riragmn*Rnl >) < u l > = -- ]~ , 

( L iM m - -  <Ri~.pqgpqr~*~rslra> ) <O/m > ~--- - - I ] i  k . ( 1 )  

Here u l is the displacement vector, e l m  is the stress tensor, and 
L and R are, respectively, the regular and random components of 
the operator Q 

Qit  = V k ~ ' i l : l m V m ,  Q i k l m  = S ~ r p e k s q V p V q s r s l m .  (2) 

The unit antisymmetric tensor is denoted eixp and the tensor 
Green function of the operators L is denoted g. The latter are de-  
termined by the equations 

Litgtn = 6 (r) 6in, Lpqu~giktm = 6 (r) 6m(pSq) n , (3) 

symmetrization being carried out with respect to the indices given in 
parentheses. 

The Fourier transforms of the Green functions are 

1 { cx+c~.  \ 
~a~  = - ~ k%',,- ~ ~ ) ,  

1 s~ + 2ss 
]"~-aPq mr~ - -  2S2 6 m ( p S q ) n - -  4se ( s l  "j" S~.) s tun  (Spq - -  n p n q ) .  ( 4 )  

Here n p =  kp/k,  and the coefficients ci and si determine the 
elastic constants averaged without taking into account the correla- 
tions in the Voigt and Reuss methods, respectively 

<s = c~Si~.61m + c~ (8,;~8/t m + 6,ZmSm), 

<S~Zm > = s~SiS<SZm + s~ (SitS/t m + 6im6~q ) . (5) 

From gqs. (i) and (3) the following expressions are obtained for 
the effective tensors Aiklm and Siklm: 

A i k l m  <~ ' i k /m  > ~ gjn ,  spanplm d g ,  

S r s i k  ~ < s r s i k >  - -  eajueblv  ~ gmnab,  uv is a v  . ( 6 )  

ikjs �9 rs n 
Here anp Zm ann bj iir~ are the binary correlation tensor functions 

{kjs 
anplm (r -- @) = <%i~js (r) s (@)>, 

r s m n  - -  ' " bjli~ (r -- ~) -- <Srsrn ~ (r) sj~i~ (~)>. (7) 

In the case of an untexturod medium 

i~]s i~js  rsmn r s m n  r %pro ( r ) =  %pl,~cp (r), bj.~ ( r ) =  ~in~ r ( 8 )  

with ~(0)= 1. 
Let us first consider polyurystalline aggregates of the tetragonal 

system. Then for classes of symmetry with six independent elastic 
constants, the tensors of the elastic moduli and compliances of a 
crystallite in the crystallographic system of coordinates may be repre- 
sented in the form 

o 
o t - c ' ~iklrn = Cl 'SikSlm @ c2 (~ilSkn~. g ~in,~Skl) V ~ 6 i S S k a S l a 6 m 3  ~ -  

+ c 4 (SikSlaSrn a @ 6is6~a6lm) @ % (SitSh36ma q- 

+ 6iaSlaShm + ~5~,,~6~,aS~a + 6,aSma6/a) + e~ .~  8,nS~.~6Z~6m,~, 

si~l m = slO6ikSlm ~_ .%o (Si~81cr a + 8 i ~  Skl)  @ saSiaSi.aS/aSm 3 @ 

+ q (8~6zsS~a + 6iaCSzaS~,~) + s~ (6~zSk.~6~s + 6~a6ta,51~ + 

~ -  6~,mSkaS/a  @ 6iaSmSSkl ) -;- s6 ~ 61nSknSZn ~ m n  , ( 9 )  
n 

the constants c i and s t being related to the two-index elastic con- 
stants cij and sij by the equations 

c~ = & + ~.'~.~ ca + % e~ + ~/a c6, e~ ~ = c~.~, c2 ~ = cGa, 

cs = Css - -  cn '-- 2~rs - -  2c~s - -  4c~ + 4c~s, 

C~ = ClS - -  C12~ C5 ~-~ C44 - -  C66, Cfl = CII - -  C12 - -  2CS6 

s,_ = s.~ ~ + ~/a~ ~s + % ~,~ + % ~ ,  s~ o = s~.,, 4s~ = ~ ,  

S3 = 8SS - -  811 - -  2SlS  @ 2sI~_ - -  s~4 + '~s~, 

s~ = ~ s  - -  s ~ . ,  4 s ~  = sa~ - -  sss, ss = s ~  - -  . ~  - -  ~/~ sss. ( 1 0 )  

By means of Eqs. (7)-(9)  we can find the total contractions of the 
autocorrelation tensors 

a i jpp  - ~iqq - -  ~/s (Cs + 3e4  + 4c~ )  ~ , 

(2ijPqijpq---- 2is :2ijPPijqq -Y 2/9 ( t  .6Cs 2 A_'gCaC 5 @ 2 8 % 2 )  r- 2/'ac~ (2ca ~- 3c~), 

~jqq~P ---- ~/s (ss + 3sa + 4sa) ~ , 

ijpq ~ihop , w z 16s~ ' 8sssac-28sa ~)+ ~ijpq = ~'/3 Pijqq ~;- 19 t " ' a T 

-.- e/a s~ (2ss -I- 3s~) , (11) 

by which the partial contractions are expressed 

il, pq - -  1 ~rrpq  ~ I :ZI'spq" 1 y/'cl~q 

ikpp - -  1 rspp 
{Zlmqq - -  /10 arsqqDik lm ,  

Di~tm =_ 6ilS~.n ~ 6u, 6~d --~ 8V.6/,)~. (12) 

There are similar relationships for grjsl~n . 
Converting to integration in transform space in (6) by means of the 

Parseval theorem and taking into account Eqs. (8)-(12), we obtain 

Ailcb n - -  <)~iklm > ~ za K v 6 i e S t m  + a t l v D i k h , ~ ,  (13) 
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Table  1 

Cubic System 

IIV 

I~v 

~t R 
A) 
a~ 

IIV 

A~ 

Ag AI AU K Li Na 

3.38 

3.07 

3.06 

2.55 

0.377 

0.609 

3.22 

2.94 

2.93 

2.49 

0,379 

0.008 

3 . t l  

2.86 

2.85 

2.41 

0.363 

0.632 

0.t747 

0.t428 

0.1373 

0.0346 

0.353 

0.586 

0.694 

0.539 

0.495 

O. 24~ 

0.348 

O. 553 

O, 380 

O. 296 

0.274 

0 , t52  

O. 3,35 

0.537 

Ni Pb CU Ge Th Pa 

1.012 

O. 890 

O. 883 

0.038 

O. 354 

O. ~25 

5.04 

5.49 

5.4S 

5.30 

0.452 

0.541 

9.47 

8.78 

8.75 

7~77 

0.406 

0.579 

3.40 

2.98 

2.95 

2,33 

0.389 

0.578 

5.46 

4.9t  

4.88 

4.00 

0.380 

0.600 

5.32 

4.89 

4.88 

4.16 

0.375 

0.6t5 

where 

Siklm -- <sih.Zm> = a/~a K-~ 6ih.6tm q- ~/4 al i-~RDisdm , 13 
(Cont'd) 

3q  + 8c~. 
a K v  = - -  :~i t35c~_ (cl -~- 2c2) ' 

a,u v = - -  450c2 (cx + 2c,.) 

1 Bs~ q- 7so. 

t t0s..~ + (Bs~ + 7s~.) ~ (14) 
a ~R 225s~ (s~ 7- s_~) 

i j m m  __ i j m n  
o~ 1 ~ o ; i jnn  , (x 2 = 3 ~ i j r n  n - -  2a 1 , 

i j m n  
~t --- ~ 9:'~'~ ~ -= 3~is~,~ --  2~1 (15) ~$nn , 

with the values of the elastic moduli averaged without taking the 

correlations into account equal to 

K .  v = ct @ ~-/~ cr ~i~ = c,, K-/~ = 9sx q- 68~, Ix-~ = 4sz. (16} 

Expressions (14) are app l icab le  to polycrys ta l l ine  aggregates  of 
random crystal lographic  symmetry .  In the case of te t ragonal  sym- 
metry  the tensor contract ions ~j~t  ~jh~ O S p q r s  and [ i vqr s ,  which de te rmine  the 
coeff icients  a and ~ that  appear in (14) are g iven  by relat ionships 
(11) and (12). For higher symmet ry- -hexagona l  and cubic- -expres-  

sions (11) are s impl i f ied.  In the first case i t  is necessary to put 
c a = s ~ = O a n d i n t h e s e c o n d t o p u t c s = c 4 = c ~ = s s  = s 4 = s ~ = 0 .  It  
is not d i f f icul t  to show that when the e f fec t ive  modul i  of shear and 
hydrostatic compression for a cubic  system coincide  with the values  
previously obtained in [10] and those for z hexagonal  system with the 
values  obtained from (14), they lead to the correlat ion corrections 
that  were derived in a different  way by Lifshits and Rozentsveig [8]. 

Similar  ca lcula t ions  for polyerys ta l l ine  aggregates  of classes 32 
am and 3m of the tr igonal  system lead to e las t ic  modul i  which are 

de termined  as usual by means  of formulas (Ii)-(15). However, we 
shall  now have  the contractions 

z ~ p q  " l J q q  I 

~3Pq - -  ? fffPP ~ ~ ~ @ 8Ss,% q- 28s~ e) -- 16.v~ ~" (17) ~ p ~  -- /~ ~S~  ~ A t t-Bs~ . 

The e las t ic  modul i  X~jkl and s~j k Z for the t r igonal  crystals differ 
from the expressions in (9) because the terms which include the 
factors es and s~ (which ind ica te  the transit ion to hexagonal  sym- 
metry)  vanish and the following addit ion is made  : 

c7 (Bi~Sy 1 - -  5i~Bj~) (6~6t~ --  5k~612) q- (5i26j3 § 6~6j~) X 

• (6k~8~ t - -  8k28z2) q- (6~6;' 3 § 6isB.a) (Bk~Sn q- 6k26a) q- 

q- (Bi~G~ q- 6~,Gi0 (Bk~Gt~ q- 6k35a)}, (18) 

to ki jkl  and a s imi lar  term to S[jkl. The relat ionship between the 
one- index and two- index  e las t ic  constants is described by expressions 

(10), in which we have to put c6 = s6 = 0, c7 = c14, and s 7 = s14/2, 
The mean  and effect ive  values  of the e las t ic  modul i  for meta ls  

of the cubic  system are g iven in Table  1 and those for polycrys ta l l ine  
aggregates of lower symmetry  in Table  2. Some of the e lements  of 
the cubic system were ca lcu la t ed  less accura te ly  in [10]. The two- 
index e las t ic  constants were taken for Zr, Ti,  and Be from [12], for 
Zn from [7], and for the remainder  from [13]. If  several  values  of 

the e las t ic  constants were reported in [13], the first were always 

taken.  
In the last  two l ines of the tables,  after the values  of p and K, the 

re la t ive  values  of the ranges 

~ v ~ = ( ~ v  - -  I %  * ) / ( ~ v  - -  ~a), 

a v~ ~" =-- (r~R* - -  g ' R ) / ( ~ v  - -  ~ R )  

are given,  and s imi la r ly  for the modulus of hydrostat ic  compression. 
Each of the r e l a t i ve  ~anges charac te r izes  the magni tude  of the in te r -  
va l  to which the subject  method leads.  

The data  g iven by Huntington [13] for the inverse matr ices  of the 

elast ic  constants contain a considerable number of errors; hence,  the 
exper imen ta l  data  were taken  as the basic ma te r i a l ,  the inverse 

mamices (eij and sij ) being checked on a "Nair i"  computer .  Bearing 
in mind that  in cer ta in  cases the corre la t ion corrections are small ,  
we carried out the ca lcula t ions  formally with an accuracy up to nine 

s ignif icant  figures. The f ina l  results fo~ the absolute values  of the 
elast ic  moduli  and the differences between them,  g iven in the 
tables,  were rounded off to three s ignif icant  figures, which cortes-  
ponds to the accuracy of the exper imen ta l  data .  It can be seen from 
the tables  that,  a l though in the  major i ty  of cases the extent  of the 
range in the Reuss method is greater  than that  in the Voigt  method,  
both methgds g ive  s imi lar  values for the e f fec t ive  e las t ic  modul i  if  

the anisotropy of the m a t e r i a l  is not too great .  
To i l lustrate  the effect  of the anisot~opy on the magni tude  of the 

correlat ion correct ion,  Fig. 1 gives curves showing the extent  of the 
devia t ion  h from the a r i thmet ic  mean  va lue  in the two methods as a 
function of the anisogopy parameter  A ~ = eta/el2,  the e las t ic  con-  
stants betng chosen as follows: c i t  = cs~ = 3ci2 = 3ca~ = 3. The dev i a -  
tion h is associated with the corre la t ion corrections by the re la t ion-  

K = AKR, The value  h O corresponds sh ipsh  K = 0 . 5  - - A  K,  h R --0.5 + = 
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Table 2 

Hexagonal System 

K V 

KV 

K R 
KR 

Ag 
~v 

~R 

Cd Co Zn Zr Ti Be 

6.28 

5.91 

6.08 

5.03 

19.05 

19.04 

19.04 

19.04 

7.30 

7,05 

7.35 

6.20 

9.54 

9.53 

9.53 

9.52 

10.73 

10.73 

10.73 

10.73 

0.295 

0.837 

2.51 

2.31 

2.31 

2.06 

0.449 

0.562 

0.729 

0.326 

8.44 

8.15 

8. i7  

8.01 

0.660 

0.369 

0.228 

1.046 

4.56 

4.25 

4.41 

3.64 

0.343 

0.838 

0.609 

0.40i 

3.64 

3.60 

3.60 

3.56 

0. 562 

0.444 

0.607 

0.~00 

4.41 

~.34: 

~.33 

4.26 

0.469 

0.505 

t t  .45 

1t .44 

t l  .44 

i i  .43 

0.550 

0.450 

t4.93 

14.86 

t4,.86~ 

t4.80' 

0.507 

0.490 

Tetragonal Trigonal System 

Sn In Sb Bi Hg Te 

K; 
KR 

~v 

FR 

5.27 

5.26 

5.26 

5.26 

4 . t6  

4.16 

4.16 

4.16 

3.94 

3.86 

3.94 

3.62 

3.60 

3.46 

3.57 

3.37 

3..35 

3.30 

3.40 

3.23 

0.865 

0.230 

i . 9 i4  

1 .7 i t  

1.777 

1.497 

0.487 

0.671 

0.132 

0.i98 

0.592 

0.49t 

0.502 

0.372 

0,458 

0.592 

0.277 

0.989 

2.51 

2.26 

2.26 

2.04 

0.527 

0.465 

0.593 

0.843 

1.326 

1.243 

1.242 

t .145 

0.460 

0.537 

0.415 

2.09 

0.806 

0.806 
0.573 

0.326 

0.4t7 

0.514 

3.36 

3.08 

3.69 

2.49 

0.324 

1.372 

2.34 

t .30i  

0.943 

0.366 

0.526 

0.293 
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to the a r i thmet ic  mean  of the modul i  averaged by the Voigt and 
Reuss methods without taking account  of the correlat ions,  whi le  h ~  = 

= 0.5 and h K = --0.5 de termine  the l imi t s  of the range K V -- K R 
which is taken as unity for any va lue  of A I. 

/ 
0 i 
0, / 

0 / 
h ~  

-0.! 

-~2 / 
-a6 -a~ -~2 0 ~zt~&, 

It can be seen from Fig. 1 that  h K and h K > 0 if  A 1 > 1. For 
A1 < 1, the two curves intersect  the abscissa and l ie  in the nega t ive  
region.  Thus, when A l >  1 the extent  of the range in the Voigt  
method is greater  than in the Reuss method,  while  when A1 < 1 the 
reverse is true. As was to be expected,  as A1 --> 1, when the contr i -  
bution of the higher-order  correlat ions is neg l ig ib ly  smal l ,  the two 
methods of ca lcu la t ion  g ive  iden t i ca l  values.  I t  should be noted that  
in the l im i t  A1 -~ 1 the ef fec t ive  va lue  of the modulus K" differs 
somewhat from the a r i thmet i c  mean  (K V + KIO/2. Similar  results 

also obtained for h~  and h~ R as a function of AI, and als0 in the are 
change  of the other anisotropy constants Az = c s3 /cn  and As = 2c44/ 
/ ( c l l  - c ~ ) .  

In the l imi t in~  transition to the isotropic point A2 = As = 1 
._> ~K K 

A l 1, we find h V = h R = 1/90.  At the same values of the 
parameters  we obtain for shear deformations h ~  = h~ = 9./139. A 

s imi lar  ca lcu la t ion  in the case A 1 = A s = 1, A 2 "--> 1 gives h V = 
= h  V = l / 9 0 a n d h ~  : h R ~ = - 1 / 4 9 0 .  I f A  l = A  2 = 1 ,  and A s # 1, 
hexagonal  ma te r i a l  degenerates  into cubic .  Hence,  for A s --" 1 we 

obtain h :o and li 0. 
Obviously, i f  the other isotropic point is chosen, the l im i t i ng  

transitions A --+ 1 lead to other numer ica l  values  of h V and h R. How- 
ever,  in terms of the order of magni tude ,  the departure of the true 
e las t ic  modulus from the a r i thmet i c  mean  wi l l  not be great .  Since, 
as A --+ 1, the corre la t ion functions higher than the second order may 
be omit ted,  the numer ica l  values g iven show that  the true values  of 

the e las t ic  modul i  agree within about 1% with the a r i thmet i c  mean  

of the modul i  found by averaging by the Voigt  and Reuss methods 

without taking the correlations into account.  
w i t h  increase in the anisotropy parameter  the values  of h V and 

h R also increase,  ind ica t ing  that  higher-order  correlations must  be 
taken into account.  In those cases where the e f fec t ive  va lue  of the 

elast ic  modulus exceeds the l imi t s  of the range gV - /~R or K V -- K R, 
the anisotropy of the m a t e r i a l  is so great  tha t  l im i t i ng  the corre la-  

tions to those of the second order only is no longer admissible .  
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